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A simple molecular model for calculating the thermodynamic properties of diatomic molecules and axial
hydrogen rotors such as HCO, H2CO, C2H4, and C2H6 has been developed. The model uses a Morse potential
for stretching vibrations, and harmonic potentials for bending and torsional vibrations. The effects of
anharmonicity, centrifugal stretching, and rotation/vibration interactions are all included. For a Morse oscillator,
the results are identical to those of Mayer and Mayer (Statistical Mechanics; Wiley: New York, 1946; Chapter
7) and Pennington and Kobe (J. Chem. Phys.1954, 22, 1442). No comparable results for axial hydrogen
rotors are available. The corrections are proportional to the ratio of the characteristic rotational and vibrational
temperatures and increase approximately linearly with temperature. In general, the absolute values of the
corrections for axial hydrogen rotors are comparable to, but slightly smaller than, those for heterogeneous
diatomic molecules containing hydrogen. At the characteristic vibrational temperature, they are of the order
of 1%.

1. Introduction

The simplest model for calculating the thermodynamic
properties of molecules is the rigid-rotor harmonic oscillator
(RRHO) approximation. Corrections for centrifugal stretching
have been derived by Wilson1 for polyatomic molecules and
by McDowell2 for linear and spherical top molecules. Ad-
ditional corrections for vibration/rotation interactions and an-
harmonicity have been derived by Mayer and Mayer3 for
diatomic molecules and by Pennington and Kobe4 for both
diatomic and polyatomic molecules. These results have been
used to calculate the thermodynamic properties of many
molecules included in the authoritativeJANAF Thermochemical
Tables5 and Thermodynamic Properties of IndiVidual Sub-
stances.6 The corrections are most important for diatomic
molecules and polyatomic molecules containing hydrogen rotors.
For other molecules, corrections to the RRHO model are
negligible compared to uncertainties in the spectroscopic
constants.

The main purpose of the present work was to develop a
simple molecular model for calculating rotation/vibration and
anharmonicity corrections for axial hydrogen rotors such as
HCO, H2CO, C2H4, and C2H6. The results are also applicable
to diatomic molecules, and for a Morse oscillator, they are
identical to those obtained by Mayer and Mayer and Pennington
and Kobe. No comparable results are available for polyatomic
molecules.

The corrections are proportional to the ratio of the charac-
teristic rotational and vibrational temperatures and increase
approximately linearly with temperature. In general, the
absolute values of the corrections for axial hydrogen rotors are
comparable to, but slightly smaller than, those for heterogeneous
diatomic molecules containing hydrogen. At the characteristic
vibrational temperature they are of the order of 1%.

The model for a Morse oscillator is presented first, in section
2. The results are then used in section 3 to obtain expressions
for the rotation/vibration and anharmonicity corrections for axial
hydrogen rotors. Note that corrections for centrifugal stretching
are automatically included in the analysis.

2. The Morse Oscillator

The Hamiltonian for a rotating diatomic molecule can be
written

where

is the effective potential,pr is the radial momentum,pΨ ) µr2Ψ̇
is the angular momentum,µ ) m1m2/(m1 + m2) is the reduced
mass, andr is the distance betweenm1 andm2. If the Morse
function

is used for the radial potential, the effective potentialVΨ has a
minimum at

where

is the force constant,

is the moment of inertia and we have dropped terms of order
δ2. SincepΨ

2 /Ikr is small compared to 1, the neglect of higher-
order terms in eq 1.4 is well justified.

Substituting eq 1.4 back into eq 1.2, we obtain the minimum
value of the effective potential

If we further assume that for smallδ, the effective potential

H ) pr
2 + VΨ(r) (1.1)

VΨ ) V(r) + pΨ
2 /2µ r2 (1.2)

V(r) ) D(1 - exp(-âe(r - re))
2 (1.3)

δ ) (r/re - 1) ) pΨ
2 /Ikr (1.4)

kr ) 2Dâe
2 re

2 ) 2Da2 (1.5)

I ) µre
2 (1.6)

V0 ) VΨ(δ) ) (kr/2)δ(1 - δ) (1.7)
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itself can be represented by a Morse function with a dissociation
energyD0 ) D - V0 and a characteristic frequency

whereνe ) (kr/I)1/2/2π anda ) âere, then the energy relative to
the ground state can be written

where x0 ) hν0/4D0. Substituting eq 1.8 into eq 1.9 and
dropping terms of orderxδ and higher, we obtain

where

is the frequency shift for a rotating Morse oscillator, and
following Mayer and Mayer, we have introduced the vibrational
frequency

for the 1-0 transition of a Morse oscillator.
Assuming that the translational and rotational degrees of

freedom can be treated by using the classical approximation,
the total partition function for the molecule can be written

where

is the transitional partition function per unit volume,

is the rotational partition function,

is the vibrational partition function,

is the dimensionless rotational energy,M ) m1 + m2 is the
total mass, andσ is the symmetry number.

Substituting eq 1.10 into eq 1.16 and expanding the expo-
nential factor involving the small parameters,x and ∆u, we
obtain

whereu ) hν/kT. Substituting eq 1.11 into eq 1.18 and using
the relations

to evaluate the sums, we find

whereQV(u) is the partition function for an harmonic oscillator
and

is a function that goes from 0 in the quantum limit to 1 in the
classical limit.

Finally, substituting eqs 1.7 and 1.20 into eq 1.13 and
expanding the exponential factor involving the small parameter

we obtain the total partition function in the form

where

is the correction to the RRHO partition function for anharmo-
nicity and vibration/rotation interactions. Equation 1.24 can
easily be integrated to give

in which we have used the approximation ln(1+ x) ≈ x, valid
for small x.

It is of interest to compare eq 1.25 with the corresponding
corrections

obtained by Mayer and Mayer and

obtained by Pennington and Kobe. Both these correction terms
are based on the empirical expression for the energy given by
Mayer and Mayer

in which ω ) ωe(1 - 2xe) and B0 ) Be(1 - Re/2Be). For a
Morse oscillator, the spectroscope constants appearing in eq 1.28
are given by

ν0 ) (∂2VΨ/µ∂r2)1/2/2π ) νe(1 - 3
2
(a - 1)δ) (1.8)

E ) hν0(υ + 1
2) - hν0x0(υ + 1

2)2
+ V0 - hνe(12 - 1

4
xe) (1.9)

Eυ ) E - V0 ) hνυ - hνx(υ2 - υ) + h∆ν(υ + 1
2) (1.10)

∆ν ) ν0 - νe ) - 3
2
(a - 1)νδ (1.11)

ν ) νe(1 - 2xe) (1.12)

Q ) QTQR∫e-Vo/kTQυ dy (1.13)

QT ) (2π MkT/h2)3/2 (1.14)

QR ) 2IkT/p2σ (1.15)

Qυ ) ∑
υ

e-Eυ/kT (1.16)

y ) pΨ
2 /2IkT ) krδ/2kT (1.17)

Qυ ) ∑
ν

e-uν(1 + ux(υ2 - υ) - ∆u(υ +
1

2)) (1.18)

∑
υ

e-uυ ) (1 - e-u)-1 ) QV(u) (1.19a)

∑
υ

υe-uυ ) -Q′V ) QV(eu - 1)-1 (1.19b)

∑
υ

υ2e-uυ ) Q′′V ) QV(eu + 1)(eu + 1)-2 (1.19c)

Qυ ) QV(u)(1 - 3
2
(a - 1)δ(K(u) + u/2) + (2x/u)K2(u))

(1.20)

K(u) ) u/(eu - 1) (1.21)

2kT/kr ) 4(p2/2Ihν)/u ) 4γ/u (1.22)

Q ) QTQRQVQC (1.23)

QC ) ∫0

∞
e-y(1 + (γ/u)(4y2 + 6(a - 1)(K(u) + u/2)y +

2a2K2(u)) dy (1.24)

ln QC ) γ(3(a - 1) + u-1(8 + 6(a - 1)K(u) + 2a2K2(u)))
(1.25)

ln QC ) u-1(8γ + (Re/Be)K(u) + 2xK2(u)) (1.26)

ln QC ) u-1(2DekT/B0
2 + (Re/Be)K(u) + 2xK2(u)) (1.27)

E/hc ) ωυ - ωxυ(1 - υ) +
B0j(j + 1)(1 - (De/Be)j(j + 1) - (Re/Be)υ) (1.28)

hcωe ) (krp
2/I)1/2 (1.29a)

hcBe ) p2/2I (1.29b)
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where

is the ratio of the characteristic rotational and vibrational
temperatures.

It should be noted that Pennington and Kobe’s eq 1.27
contains all five spectroscopic constants, Mayer and Mayer’s
eq 1.26 contains four sinceDe has been eliminated using eq
1.29d, and eq 1.25 contains just the three Morse potential
parameters which can be most accurately obtained from the
spectroscopic parametersωe, Be, and ωexe. Therefore, in
principle, eq 1.27 should be the most accurate, eq 1.26 the next
most accurate, and eq 1.25 the least accurate. In practice, the
corrected results obtained using any of these three equations
are nearly identical and agree to five significant figures.

Substituting eqs 1.29 into eqs 1.26 and 1.27, we obtain in
either case the result

in which, following Mayer and Mayer, the small differences
betweenBe andB0 andωe andω0 have been neglected. It can
be seen that eqs 1.25 and 1.30 differ by the constant term
3(a - 1)γ. The reason for this is that both Mayer and Mayer
and Pennington and Kobe used the constantB0 in their
expression for the RRHO rotational partition function whereas,
in the present work,Be appears as the natural choice. When
this difference is taken into account, the results are found to be
identical. One advantage of usingBe rather thanB0 is that it
eliminates the rotation/vibration interaction constantRe from
the RRHO partition function. A second advantage is that it
makes it possible to scale the corrections in a simple manner
which clearly shows their dependence on the three most
important parametersωe, Be, anda.

Explicit expressions for corrections to the thermodynamic
properties can now be obtained from eq 1.25. By definition,
the dimensionless RRHO Gibbs free energy is

from which we obtain the corrections for the dimensionless
energy

where

the dimensionless heat capacity

where

and the dimensionless entropy

The above equations are useful for calculating the thermo-
dynamic properties of diatomic molecules in cases where there
are insufficient spectroscopic data to permit direct summation
of the partition function and only the Morse potential parameters
are known or can be calculated. They are also useful in cases
where relatively simple and accurate expressions are needed
for on-line numerical calculations for a wide range of molecules
and temperatures.

The functionsK(u), Gr(u), Gx(u), Hr(u), andHx(u) appearing
in eqs 1.30, 1.32, and 1.35 are plotted as a function ofu-1 )
T/TV in Figure 1. In the quantum limit,T f 0, they all approach
zero while in the classical limit,T f ∞, they all approach unity.

The scaled corrections (EC/RT)(TV/TR), (CC/R)(TV/TR), and (SC/
R)(TV/TR) to the RRHO values of the energy, heat capacity, and
entropy obtained from eqs 1.32, 1.35, and 1.38 are shown in
Figure 2 as a function of the dimensionless temperature,T/TV,

for several values ofa. Since all the corrections are proportional
to TR/TV, they are most important for diatomic molecules
containing hydrogen. Corrected values for the energy, heat
capacity, and entropy of HO are compared with RRHO values
in Figure 3. The corrected values agree perfectly with values
in theJANAF Thermochemical Tablesas they should since the
difference between the four-parameter Mayer and Mayer equa-
tions used in preparing the JANAF Tables and the three-
parameter Morse oscillator equations is negligible. It can be
seen that the corrections, particularly for the specific heat, are
quite significant. They are typical of those for other hetero-
geneous molecules containing hydrogen. Since the corrections
are proportional toTR/TV, they are considerably smaller for
diatomic molecules containing only heavy atoms.

Given the values ofTR, TV, and a, the curves in Figure 2
provide a simple method of estimating the corrections to the

ωexe/Be ) a2 (1.29c)

De/Be ) 4γ2 (1.29d)

Re/Be ) 6(a - 1)γ (1.29e)

γ ≡ Be/ωe ) TR/TV (1.29f)

ln QC ) γu-1(8 + 6(a - 1)K(u) + 2a2K2(u)) (1.30)

µC/RT) -ln QC (1.31)

EC

RT
)

T d ln QC

dT
)

γ(8 + 6(a - 1)Gr(u) + 2a2Gx(u))/u (1.32)

Gr(u) ) K(u)(K(u) + u) (1.33)

Gx(u) ) K2(u)(2K(u) + 2u - 1) (1.34)

CC

R
)

dEC

RdT
) γ(16 + 12(a - 1)Hr(ur) + 4a2Hx(ur))/u

(1.35)

Figure 1. Functions used in the equations for the rotation/vibration
corrections to the RRHO thermodynamic properties of molecules.

Hr(u) ) K(u)(K(u) + u)(K(u) + u/2) (1.36)

Hx(u) ) K2(u)(K(u) + u)(3K(u) + 2u - 2) (1.37)

SC

R
)

EC - µC

RT
(1.38)
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RRHO thermodynamic properties. For greater accuracy or use
in dynamic computer calculations, the defining equations can
easily be programmed as subroutines eliminating the need for
tables or empirical fits.

3. Axial Hydrogen Rotors

The methods described above can also be used to calculate
corrections for axial rotors of the type XYHσ. If we assume
that the masses of the heavy particles X and Y are large
compared to the mass of the hydrogen atom H, then the motion
of the heavy particles and the hydrogen atoms can be separated.
The corrections for the heavy particles can be calculated from
the previous results and are expected to be negligible. The
corrections for the hydrogen atoms are derived in this section.

For simplicity, we shall limit our considerations to cases in
which the number of H atoms,σ, bonded to a single heavy
particle is less than or equal to three. Under this condition, the
reduced mass for the torsional vibrations is simplyµâ ) m/σ

and the Hamiltonian for the hydrogen atoms can then be written
in the form

where

is the Hamiltonian for the torsional vibrations,

is the Hamiltonian for the coupled stretching and bending
vibrations of a single H atom and

is the effective potential. In these equations,pΨ is the angular
momentum for rotation of the molecule about theXYaxis,m is
the mass of the H atom,r is the radial separation between the

Figure 2. Scaled plots of the rotation/vibration corrections to the
energy, heat capacity, and entropy of diatomic molecules as a function
of T/TV for several values of the parametera ) âre.

Figure 3. Comparison of the thermodynamic properties corrected for
rotation/vibration interactions with RRHO values for the HO radical.

HH ) σHrR + (σ - 1)Hâ (2.1)

Hâ ) pâ
2/µâr

2 sin2 R + Vâ(â) (2.2)

HrR ) pr
2/2m + pR

2/2mr2 + VΨ (2.3)

VΨ ) Vr(r) + VR(R) + pΨ
2 /2σ2mr2 sin2 R (2.4)
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H atom and the heavy particle Y,R is the polar angle between
r and theXY axis, â is the normal coordinate for a torsional
vibration, andpr, pR, andpâ are the momenta conjugate tor, R,
andâ.

If we further assume that the radial potential can be
represented by the Morse function (1.3) and that the bending
and torsional potentials are given by

and

then the radial and angular displacements of the minimum in
the effective potential are given by

and

where

is the moment of inertia for rotation about the molecular axis
and

Substituting eqs 1.3, 2.5, 2.7, and 2.8 into eq 2.4, we obtain
the minimum value of the effective potential

The corresponding effective frequencies for the stretching,
bending and torsional vibrations are

in which

Given the frequency shifts for the various vibrational modes,
the partition functions can be evaluated by using the same
techniques employed in the preceding section and are given by

where for each modeu ) hν/kTandK(u) is defined by eq 1.21.
Again assuming that rotation about the heavy particle axis

can be treated classically, the partition function for the hydrogen
atoms can be written

Substituting eq 2.11 into eq 2.16 and expanding the expo-
nential factor involvingδ2, we obtain

where

is the rotational partition function and

Finally, combining eqs 2.7, 2.13, and 2. 15 with eq 2.17
and carrying out the integration, we obtain

where

is the correction to the RRHO Gibbs free energy and

The five terms in eq 2.21 having the coefficients

give respectively the corrections for anharmonicity of the radial
potential, centrifugal stretching, and the effect of rotation on
the stretching, bending, and torsional vibrations of the hydrogen
atoms.

VR ) 1
2
kR(R - Re)

2 (2.5)

Vâ ) 1
2
kââ2 (2.6)

δ ) (r/re - 1) ) pΨ
2 /σCkr (2.7)

η ) R - Re ) pΨ
2 /σCkR tanRe ) δb cot Re (2.8)

C ) σmre
2 sin2 Re (2.9)

b ) kr/kR ) (νr/νR)2 (2.10)

V0 ) VΨ(δ,η) ) (kr/2)δ(1 - δ(1 + b cot2 R)) (2.11)

νr ) (∂2VΨ/m∂r2)1/2/2π ) νre(1 - 3
2
(a - 1)δ) (2.13a)

νR ) (∂2VΨ/m∂R2)1/2/2πr )

νRe(1 - (1 - 1
2
b(1 + 3 cot2 Re)δ)) (2.13b)

νâ ) (∂2VΨ/µâ∂â2)1/2/2πr sin R )

νâe(1 - (1 + b cot2 Re)δ) (2.13c)

νre ) (kr/mre
2)1/2/2π (2.14a)

νRe ) (kR/mre
2)1/2/2π (2.14b)

νâe ) (kâ/µâre
2 sin2 Re)

1/2/2π (2.14c)

Qr ) Qυ(ur)(1 - (∆νr/νr))(K(ur) + ur/2) + (2x/ur)K
2(ur))
(2.15a)

QR ) Qυ(uRe)(1 - (∆νR/νR))(K(uR) + uR/2) (2.15b)

Qâ ) Qυ(uâe)(1 - (∆νâ/νâ))(K(uâ) + uâ/2) (2.15c)

QH ) ∫e-σV0/kTQr
σ QR

σ Qâ
σ-1 dpψ/pσ (2.16)

QH ) QR∫0

∞
e-y(πy)-1/2Qr

σ QR
σ Qâ

σ-1(1 +

(2kT/σkr)(1 + b cot2 Re)y
2) dy (2.17)

QR ) (2πCkT/p2)1/2/σ (2.18)

y ) pΨ
2 /2CkT (2.19)

QH ) QRQV
σ(ur)QV

σ(uRe)QV
σ-1(uâe)Qc(us,ub,ut) (2.20)

ln Qc )
er

ur
(AR + AxK

2(ur) + Ar(K(ur) +
ur

2) +

AR(K(uR) +
uR

2 ) + Aâ(K(uâ) +
uâ

2 )) (2.21)

er ) (p2/2mre
2)/(hνr) (2.22)

AR ) 3(1 + b cot2 R)/σ (2.23a)

Ax ) 2a2σ (2.23b)

Ar ) 3(a - 1) (2.23c)

AR ) 2(1 - 1
2
b(1 + 3 cot2 R)) (2.23d)

Aâ ) 2(1 + b cot2 R)(σ - 1)/σ (2.23e)
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The corresponding corrections for the energy, heat capacity,
and entropy are

and

where the functionsGx, Gr, Hx, andHr are given by eqs 1.33,
1.34, 1.36, and 1.37 in the preceding section.

The above results can easily be extended to include the
rotation/vibration corrections for axial rotors of the type
Hσ1XYHσ2. If the rotation about the X-Y bond is unrestricted,
the correction for such molecules is simply the sum of the
corrections for the two terminal rotors. If the rotation about
the bond is restricted, the corrections for the two free rotations
of the terminal groups must be replaced by corrections for one
free rotation about the axis of the molecule and one torsional
vibration of the terminal groups. The correction for the Gibbs
free energy then becomes

Figure 4. Plots of the rotation/vibration corrections to the energy, heat
capacity, and entropy of H2CO, C2H4, and C2H6 as a function of
T/TV.

EC

RT
)

er

ur
(AR + AxGx(ur) + ArGr(ur) +

νR

νr
ARGr(uR) +

νâ

νr
AâGr(uâ)) (2.24)

CC

RT
)

er

ur
(AR + AxHx(ur) + ArHr(ur) +

kR

kr
ARHr(uR) +

kâ

kr
AâHr(uâ)) (2.25)

SC

R
)

EC - µC

RT
(2.26)

Figure 5. Comparison of the thermodynamic properties corrected for
rotation/vibration interactions with RRHO values for the axial rotor
H2CO.

TABLE 1. Parameters for Axial Rotors

R,
deg

re,
Å a

ωr,
cm-1

ωσ,
cm-1

ωâ,
cm-1

ωτr,
cm-1

H2CO 59 1.12 2.1 2800 1200 1500
C2H4 59 1.09 2.1 3000 950 1400 1000
C2H6 71 1.11 2.1 3000 1000 1500 500

8612 J. Phys. Chem. A, Vol. 102, No. 44, 1998 Keck



where C ) C1 + C2, uτ ) hντ/kT, and ντ is the torsional
frequency. The remaining thermodynamic properties can be
easily obtained using the expressions previously given.

Typical corrections for the dimensionless energy, heat capac-
ity, and entropy of the axial rotors H2CO, C2H4, and C2H6 are
shown in Figure 4 as a function of the dimensionless temper-
ature,T/TV. The parameters used in the calculations are given
in Table 1. Corrected values for the energy, heat capacity, and
entropy are compared with the RRHO values given in the
JANAF Thermochemical Tables5 in Figure 5. Although the
vibration/rotation corrections for these molecules are probably
negligible for most practical applications, they are well outside

the accuracy with which the JANAF and other similar tables6,7

have been prepared and should be included in the tables.
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µC

RT
)

C1

C(erAâ

ur
)

1

+
C2

C(erAâ

ur
)

2

+
C1C2

C2 ((erAâ

ur
)

1

+

(erAâ

ur
)

2
)(K(uτ) +

uτ

2) + ∑
i)1

2 (er

ur
(AxK

2(ur) + Ar(K(ur) +
ur

2) +

AR(K(uR) +
uR

2 ) + Ar(K(uâ) +
uâ

2 ))
i

(2.27)
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