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A simple molecular model for calculating the thermodynamic properties of diatomic molecules and axial
hydrogen rotors such as HCO,ED, GH,, and GHg has been developed. The model uses a Morse potential
for stretching vibrations, and harmonic potentials for bending and torsional vibrations. The effects of
anharmonicity, centrifugal stretching, and rotation/vibration interactions are all included. For a Morse oscillator,
the results are identical to those of Mayer and Magaiistical MechanicsViley: New York, 1946; Chapter

7) and Pennington and Kobd.(Chem. Physl1954 22, 1442). No comparable results for axial hydrogen
rotors are available. The corrections are proportional to the ratio of the characteristic rotational and vibrational
temperatures and increase approximately linearly with temperature. In general, the absolute values of the
corrections for axial hydrogen rotors are comparable to, but slightly smaller than, those for heterogeneous
diatomic molecules containing hydrogen. At the characteristic vibrational temperature, they are of the order
of 1%.

1. Introduction 2. The Morse Oscillator

The simplest model for calculating the thermodynamic  The Hamiltonian for a rotating diatomic molecule can be
properties of molecules is the rigid-rotor harmonic oscillator written
(RRHO) approximation. Corrections for centrifugal stretching
have been derived by Wilséror polyatomic molecules and H= pr2 + V() (1.2)
by McDowelP for linear and spherical top molecules. Ad-
ditional corrections for vibration/rotation interactions and an- Where
harmonicity have been derived by Mayer and Mé&yéar ) )
diatomic molecules and by Pennington and Koker both Vi =V(r) + pyl2ur (1.2)
diatomic and polyatomic molecules. These results have been . L . .
used to calculate the thermodynamic properties of many IS the effective potentiafy is the radial momentunpy = ur®¥
molecules included in the authoritati#aNAF Thermochemical IS the angular momenturp, = mymy/(my + m) is the reduced
Table§ and Thermodynamic Properties of Inddual Sub- mass, and is the distance betweem, andmy. If the Morse
stance$ The corrections are most important for diatomic function
molecules and polyatomic molecules containing hydrogen rotors.
For other moIFe)CL)J/Ies, corrections to the RgH)(/D rr?odel are V(r) = D(L — exppdr — r9)* (1.3)
2522?;212 compared to uncertainties in the spectroscopic is_u_sed for the radial potential, the effective potentialhas a
The main purpose of the present work was to develop a Mnimum at
simple molecular model for calculating rotation/vibration and
anharmonicity corrections for axial hydrogen rotors such as
HCO, H2CO, C2H4, and C2H6. The results are also applicable
to diatomic molecules, and for a Morse oscillator, they are
identical to those obtained by Mayer and Mayer and Pennington _ 2.2 _ 2
and Kobe. No comparable results are available for polyatomic k.= 2Df; 1o = 2Da (1.5)
molecules.
The corrections are proportional to the ratio of the charac-
teristic rotational and vibrational temperatures and increase | = ur? (1.6)
approximately linearly with temperature. In general, the €

absolute values of the corrections for axial hydrogen rotors are js the moment of inertia and we have dropped terms of order

comparable to, but slightly smaller than, those for heterogeneous y2. Sincepﬁ,/lkr is small compared to 1, the neglect of higher-

diatomic molecules containing hydrogen. At the characteristic orger terms in eq 1.4 is well justified.

vibrational temperature they are of the order of 1%. _ Substituting eq 1.4 back into eq 1.2, we obtain the minimum
The model for a Morse oscillator is presented first, in section yaye of the effective potential

2. The results are then used in section 3 to obtain expressions

0= (rlr,— 1) = palIk, (1.4)

where

is the force constant,

for the rotation/vibration and anharmonicity corrections for axial Vo = V() = (k/2)0(1 — 96) (1.7)
hydrogen rotors. Note that corrections for centrifugal stretching
are automatically included in the analysis. If we further assume that for small, the effective potential
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itself can be represented by a Morse function with a dissociation
energyDo = D — Vg and a characteristic frequency

vy = (PVludrd) 22 = Ve(l - g(a - 1)6) (1.8)

whereve = (k/1)Y42 anda = Bere, then the energy relative to
the ground state can be written

E= hvo(v + %) - hvoxo(v + %)2 +V,— hve(% - %.Xe) (1.9)

where X = hvg/4Do.  Substituting eq 1.8 into eq 1.9 and
dropping terms of ordexd and higher, we obtain

E,=E—-V,=tvv — hvx(v? — v) + hAv(v + %) (1.10)

where

Av=vy—v,=— g(a —1wo (1.11)
is the frequency shift for a rotating Morse oscillator, and
following Mayer and Mayer, we have introduced the vibrational

frequency
v=v1l—2x) (1.12)

for the 1-0 transition of a Morse oscillator.
Assuming that the translational and rotational degrees of

freedom can be treated by using the classical approximation,

the total partition function for the molecule can be written

Q=QQx[e ”Q, dy (1.13)
where
Q; = (27 MKT/h?)*? (1.14)

is the transitional partition function per unit volume,

Qg = 2IkT/h?o (1.15)
is the rotational partition function,
Q,= ze*Ev/” (1.16)
is the vibrational partition function,
y = p3/2IKT = k 0/2kT (1.17)

is the dimensionless rotational enerdy,= m; + mp is the
total mass, and is the symmetry number.

Substituting eq 1.10 into eq 1.16 and expanding the expo-
nential factor involving the small parametessand Au, we
obtain

— —uy 2 _ _ E))
Q, Ze (1+ux(v v) Au(v+2 (1.18)

whereu = hw/KT. Substituting eq 1.11 into eq 1.18 and using
the relations

Se=@- e ) =Quu) (1.19a)

Keck

Sve=-Q,=Q(e'-1)"  (1.19b)

sze‘““ =Qu=Que"+1(E'+ 1) (1.19)

v

to evaluate the sums, we find

Q.= Quuft - Sa— DoKW + w2) + @duK(W)
(1.20)

whereQy(u) is the partition function for an harmonic oscillator
and

K(u) = u/(e" — 1) (1.21)

is a function that goes from 0 in the quantum limit to 1 in the
classical limit.

Finally, substituting eqs 1.7 and 1.20 into eq 1.13 and
expanding the exponential factor involving the small parameter

2kT/k, = 4(H°/2Ihv)/u = 4ylu (1.22)
we obtain the total partition function in the form
Q = Q:QrQQc (1.23)

where

Qc= ./(])meiy(l + (V/U)(4y2 + 6@ — 1)(K(u) + u2)y +

2a2K?(u)) dy (1.24)

is the correction to the RRHO partition function for anharmo-
nicity and vibration/rotation interactions. Equation 1.24 can
easily be integrated to give

In Q.= y(3(a— 1)+ u (8 + 6(a — 1)K(u) + 2a°K>(u)))
(1.25)

in which we have used the approximation Inflx) ~ x, valid
for small x.

It is of interest to compare eq 1.25 with the corresponding
corrections

In Qc = u '8y + (atd/BYK(U) + 2xK*(u))  (1.26)

obtained by Mayer and Mayer and
In Q. = u (2D KT/B3 + (a/BoK(U) + 2xKZ(u)) (1.27)

obtained by Pennington and Kobe. Both these correction terms
are based on the empirical expression for the energy given by
Mayer and Mayer

E/hc= wv — wxv(l —v) +
Ba( + 1)(1— (DJBYi( + 1) — (o/Byv) (1.28)
in which o = we(1 — 2%) and By = Bo(1 — a/2B). For a

Morse oscillator, the spectroscope constants appearing in eq 1.28
are given by
how, = (kh?/1)M? (1.29a)

hcB, = h%2l (1.29b)
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wXJ/B, = a (1.29¢) 1o
D/B, = 4y° (1.29d)
a/B,=6(a— 1)y (1.29) omt
where
y =BJw, =TT, (1.29f)

050+

is the ratio of the characteristic rotational and vibrational
temperatures.

It should be noted that Pennington and Kobe's eq 1.27
contains all five spectroscopic constants, Mayer and Mayer'’s 05t
eq 1.26 contains four sindge has been eliminated using eq
1.29d, and eq 1.25 contains just the three Morse potential
parameters which can be most accurately obtained from the
spectroscopic parameteis., Be, and wexe. Therefore, in 000 dulid; . .
principle, eq 1.27 should be the most accurate, eq 1.26 the next ° ! A 2 3
most accurate, and eq 1.25 the least accurate. In practice, thd-igure 1. Functions used in the equations for the rotation/vibration
corrected results obtained using any of these three equationgorrections to the RRHO thermodynamic properties of molecules.
are nearly identical and agree to five significant figures.

Substituting egs 1.29 into eqgs 1.26 and 1.27, we obtain in
either case the result

where

H, (u) = K(u)(K(u) + u)(K(u) + u/2) (1.36)
— -1 212

In Qe =yu "8+ 6@~ LK)+ 2a°KHW) (1.30) H,(u) = KEU)(K(U) + W(EKW) + 2u—2)  (1.37)
in which, following Mayer and Mayer, the small differences
betweenB. and B, andw, andwo have been neglected. It can and the dimensionless entropy
be seen that eqs 1.25 and 1.30 differ by the constant term
3(@ — 1)y. The reason for this is that both Mayer and Mayer % _ Ec—uc (1.38)
and Pennington and Kobe used the constBatin their R RT '
expression for the RRHO rotational partition function whereas,
in the present workB. appears as the natural choice. When  The above equations are useful for calculating the thermo-
this difference is taken into account, the results are found to be dynamic properties of diatomic molecules in cases where there
identical. One advantage of usify rather thanBy is that it are insufficient spectroscopic data to permit direct summation
eliminates the rotation/vibration interaction constamtfrom of the partition function and only the Morse potential parameters
the RRHO partition function. A second advantage is that it are known or can be calculated. They are also useful in cases
makes it possible to scale the corrections in a simple mannerwhere relatively simple and accurate expressions are needed
which clearly shows their dependence on the three most for on-line numerical calculations for a wide range of molecules
important parameterse, Be, anda. and temperatures.

Explicit expressions for corrections to the thermodynamic ~ The functionsK(u), Gy(u), Gy(u), H(u), andHx(u) appearing
properties can now be obtained from eq 1.25. By definition, in €gs 1.30, 1.32, and 1.35 are plotted as a function éf=

the dimensionless RRHO Gibbs free energy is T/Tyin Figure 1. In the quantum limif — O, they all approach
zero while in the classical limiff — o, they all approach unity.
UJRT=—In Q¢ (2.31) The scaled correction&¢/RT)(T\/Tr), (Cc/R)(Tv/Tr), and &/

R)(T\/Tg) to the RRHO values of the energy, heat capacity, and
from which we obtain the corrections for the dimensionless entropy obtained from eqgs 1.32, 1.35, and 1.38 are shown in

energy Figure 2 as a function of the dimensionless temperailiig,

for several values ad. Since all the corrections are proportional
Esz In ch to Tr/Ty, they are most important for diatomic molecules
RT dT containing hydrogen. Corrected values for the energy, heat

7(8+ 6(a — 1)G,(U) + 2a%G,(u))/u (1.32) capacity, and entropy of HO are compared with RRHO values
in Figure 3. The corrected values agree perfectly with values
where in the JANAF Thermochemical Tables they should since the
difference between the four-parameter Mayer and Mayer equa-
G,(u) = K(u)(K(u) + u) (1.33) tions used in preparing the JANAF Tables and the three-
parameter Morse oscillator equations is negligible. It can be
G,(u) = K3(u)(2K(u) + 2u — 1) (1.34) seen that the corrections, particularly for the specific heat, are
quite significant. They are typical of those for other hetero-
the dimensionless heat capacity geneous molecules containing hydrogen. Since the corrections
are proportional toTg/Ty, they are considerably smaller for
C. dEc 5 diatomic molecules containing only heavy atoms.
R Rar r16+ 12@— DH () + 4aH,(u)/u Given the values offg, Ty, anda, the curves in Figure 2
(1.35) provide a simple method of estimating the corrections to the
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Figure 3. Comparison of the thermodynamic properties corrected for
Figure 2. Scaled plots of the rotation/vibration corrections to the rotation/vibration interactions with RRHO values for the HO radical.

energy, heat capacity, and entropy of diatomic molecules as a function

of T/Ty for several values of the parameter= fre. and the Hamiltonian for the hydrogen atoms can then be written
in the form

RRHO thermodynamic properties. For greater accuracy or use

in dynamic computer calculations, the defining equations can Hy=oH, + (0 — 1)Hg (2.1)

easily be programmed as subroutines eliminating the need for

tables or empirical fits. where

3. Axial Hydrogen Rotors Hy = IOE//«‘/JZ sir’ o+ Vi(B) (2.2)
The methods described above can also be used to calculatgs the Hamiltonian for the torsional vibrations,

corrections for axial rotors of the type XYH If we assume

that the masses of the heavy particles X and Y are large H,, = p,2/2m+ p§/2mr2+VqJ (2.3)

compared to the mass of the hydrogen atom H, then the motion

of the heavy particles and the hydrogen atoms can be separateds the Hamiltonian for the coupled stretching and bending

The corrections for the heavy particles can be calculated from vibrations of a single H atom and

the previous results and are expected to be negligible. The

corrections for the hydrogen atoms are derived in this section. Vg = V(1) + V (o) + p3/20°mPsifa. (2.4)
For simplicity, we shall limit our considerations to cases in

which the number of H atoms;, bonded to a single heavy is the effective potential. In these equatiops,is the angular

particle is less than or equal to three. Under this condition, the momentum for rotation of the molecule about téaxis,mis

reduced mass for the torsional vibrations is simply= m/o the mass of the H atorm,is the radial separation between the
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H atom and the heavy particle ¥, is the polar angle between Q.= Q, (U@ — (Av v ))K(u) +u/2)  (2.15b)
r and theXY axis, § is the normal coordinate for a torsional

vibration, andpy, ps, andpg are the momenta conjugaterta, Qs = Q,(Ug) (1 — (Avglvp))(K(ug) + uy/2) (2.15¢)
andg.

If we further assume that the radial potential can be \yhere for each mode = hv/kT andK(u) is defined by eq 1.21.
represented by the Morse function (1.3) and that the bending Again assuming that rotation about the heavy particle axis

and torsional potentials are given by can be treated classically, the partition function for the hydrogen
1 5 atoms can be written
Vo= éka(a — ) (2.5)

g Q= [e ™ Q;Qf tdp,/he (2.16)

1 Substituting eq 2.11 into eq 2.16 and expanding the expo-
Vi=35 i (2.6) nential factor involvingd?, we obtain

then the radial and angular displacements of the minimum in Q , = QRL‘”G—V(W)—UZ ’QC Qg_l(l +

the effective potential are given by
(2kTlok )(1 + b cof a)y?) dy (2.17)

0= (rlr,— 1) = p4,/oCk (2.7)
where
and
— 2\1/2
7 =0 — o= paloCk, tana, = obcota,  (2.8) Qr = (272CKTIR) "o (2.18)
where is the rotational partition function and
C=omesir’ o, (2.9) y = p%/2CKT (2.19)

is the moment of inertia for rotation about the molecular axis Finally, combining eqs 2.7, 2.13, and 2. 15 with eq 2.17

and and carrying out the integration, we obtain
b=k/k, = (vv,)? (2.10) _
= e Q= QrQUU) QU Q) (U QU Uy, U) - (2.20)
Substituting egs 1.3, 2.5, 2.7, and 2.8 into eq 2.4, we obtain
the minimum value of the effective potential where

V= Vy(0.7) = (k/2)0(1 — 6(1 + b cof o)) (2.11) o %(AR + AR+ AT(K(u) . &) .
C ur r r 2

The corresponding effective frequencies for the stretching, U U
bending and torsional vibrations are o B
Au(K(ua) + ?) + Aﬁ(K(uﬂ) + E)) (2.21)

v, = (0 lmard)22m = v,e(l ~3a- 1)5) 2.13a) , _
2 is the correction to the RRHO Gibbs free energy and
— (a2 2\1/2 —

vae(l - (1 ~ Y+ 3 cot ae)é)) (2.13b)
2 The five terms in eq 2.21 having the coefficients

vy = (Vluz0p%) 2zt sina =

A, = 3(1+ bcof a)lo (2.23a)
V41— (1+ bcof 0, )0) (2.13¢)
in which A, =2d0 (2.23b)
Vie ™ (kr/mr§)1/2/2.7r (2148.) Ar — 3(a _ 1) (2230)
Voo = (kM) 27 (2.14b) L
A, =2 1—§b(1+300l2 ) (2.23d)
Ve = (Kyluyr% sirf a) /2 (2.140)
Given the frequency shifts for the various vibrational modes, A;=2(1+Db cof a)(o — 1)lo (2.23e)

the partition functions can be evaluated by using the same
techniques employed in the preceding section and are given bygive respectively the corrections for anharmonicity of the radial
) potential, centrifugal stretching, and the effect of rotation on
Q = Q,(u)(L — (Av /v ))(K(y,) + u/2) + (2du,)K(u,)) the stretching, bending, and torsional vibrations of the hydrogen
(2.15a) atoms.
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Figure 4. Plots of the rotation/vibration corrections to the energy, heat Figure 5. Comparison of the thermodynamic properties corrected for
capacity, and entropy of H2CO, C2H4, and C2H6 as a function of rotation/vibration interactions with RRHO values for the axial rotor
Ty H2CO.

The corresponding corrections for the energy, heat capacity, TABLE 1. Parameters for Axial Rotors
and entropy are o e, o, @, wp, T

E. dég a cm! cm?! cm?! cm?
& Vo
oA+ AG(L) 4+ AG(U) + %A G.(u) + H.CO 59 112 21 2800 1200 1500
RT u Ar T AG(U) T AGU) vrA“ (o) CHs 59 109 21 3000 950 1400 1000
CoHs 71 1.11 2.1 3000 1000 1500 500

v
LaG,(uy)| (2.24) . .
Y, where the function§,, G;, Hy, andH, are given by eqgs 1.33,
K, 1.34, 1.36, and 1.37 in the preceding section.
c & The above results can easily be extended to include the
RT u_r(AR +AHW) + AH(u) + EAaHr(ua) + rotation/vibration corrections for axial rotors of the type
K HoiXYHo,. [f the rotation about the XY bond is unrestricted,
_ﬂAﬁHr(uﬁ)) (2.25) the cor_rection for such molecules is simply the sum of the
ke corrections for the two terminal rotors. If the rotation about
the bond is restricted, the corrections for the two free rotations

and of the terminal groups must be replaced by corrections for one
free rotation about the axis of the molecule and one torsional
EC — Be ~Hc (2.26) vibration of the terminal groups. The correction for the Gibbs
R RT ' free energy then becomes
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uc  Cifehy CylehA; C,GC, e,Aﬁ) the accuracy with which the JANAF and other similar tables
—=—]—] +—{— + — + have been prepared and should be included in the tables.
RT Cl\u /), Clu/, c2Wu/,
eAs u, 2 (e Uy Acknowledgment. The author thanks Professor Hameed
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